ExtremeWeather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events

نویسندگان

  • Evan Racah
  • Christopher Beckham
  • Tegan Maharaj
  • Samira Ebrahimi Kahou
  • Prabhat
  • Christopher Joseph Pal
چکیده

Then detection and identification of extreme weather events in large-scale climate simulations is an important problem for risk management, informing governmental policy decisions and advancing our basic understanding of the climate system. Recent work has shown that fully supervised convolutional neural networks (CNNs) can yield acceptable accuracy for classifying well-known types of extreme weather events when large amounts of labeled data are available. However, many different types of spatially localized climate patterns are of interest including hurricanes, extra-tropical cyclones, weather fronts, and blocking events among others. Existing labeled data for these patterns can be incomplete in various ways, such as covering only certain years or geographic areas and having false negatives. This type of climate data therefore poses a number of interesting machine learning challenges. We present a multichannel spatiotemporal CNN architecture for semi-supervised bounding box prediction and exploratory data analysis. We demonstrate that our approach is able to leverage temporal information and unlabeled data to improve the localization of extreme weather events. Further, we explore the representations learned by our model in order to better understand this important data. We present a dataset, ExtremeWeather, to encourage machine learning research in this area and to help facilitate further work in understanding and mitigating the effects of climate change. The dataset is available at extremeweatherdataset.github.io and the code is available at https://github.com/eracah/hur-detect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Detection of Extreme Weather Events in Large Climate Datasets

The detection and identification of extreme weather events in large scale climate simulations is an important problem for risk management, informing governmental policy decisions and advancing our basic understanding of the climate system. Recent work has shown that fully supervised convolutional neural networks (CNNs) can yield acceptable accuracy for classifying well-known types of extreme we...

متن کامل

Impacts of climate change on extreme precipitation events in arid (Bandar Abbas) and semi-arid (Shahrekord) stations in Iran

The aim of this paper is to project extreme precipitation events in an arid and a semiarid station. In order to project climate change based on general circulation models (GCMs), we have applied LARS-WG[1] downscaling tool. This stochastic weather generator down-scaled the climate of two synoptic stations using HADCM3 model and A2 emission scenario for 2040. We extracted extreme precipitation e...

متن کامل

Climate Change Impact on Precipitation Extreme Events in Uncertainty Situation; Passing from Global Scale to Regional Scale

Global warming and then climate change are important topics studied by researchers throughout the world in the recent decades. In these studies, climatic parameters changes are investigated. Considering large-scaled output of AOGCMs and low precision in computational cells, uncertainty analysis is one of the principles in doing hydrological studies. For this reason, it is tried that investigati...

متن کامل

Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities

Weather and climate extremes are identified as major areas necessitating further progress in climate research and have thus been selected as one of the World Climate Research Programme (WCRP) Grand Challenges. Here, we provide an overview of current challenges and opportunities for scientific progress and cross-community collaboration on the topic of understanding, modeling and predicting extre...

متن کامل

Improving Societal Outcomes of Extreme Weather in a Changing Climate: An Integrated Perspective

Despite hazard mitigation efforts and scientific and technological advances, extremeweather events continue to cause substantial losses. The impacts of extreme weather result from complex interactions among physical and human systems across spatial and temporal scales. This article synthesizes current interdisciplinary knowledge about extreme weather, including temperature extremes (heat and co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017